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SUMMARY ﬁ?{}ﬁ/‘{

Comparisons are made of experimental and theoretical zero-1lift wave
drag for several nose shapes, wing-~body combinations, and models of
current airplanes at Mach numbers up to 1.9. The experimental data were
obtained from tests in the Ames 6- by 6-foot supersonic wind tunnel and
at the NACA Wallops Island facility. The theoretical drag was found by
use of a linear theory utilizing model area distributions.

The agreement between theoretical and experimental zero-lift wave-
drag coefficients was generally very good, especially for a fuselage or
for fuselage-wing combinations that were vertically symmetrical. For
other models that had rapid changes in body shape and/or were not verti-
cally symmetrical, the agreement of theory with experiment ranged from
fair to poor, depending on the severity of the change in shape.

W?

In reference 1 a method was suggested for estimating the zero-1lift
wave drag of wing-body combinations moving at supersonic speeds. The
mechanics of applying this method were developed in references 2 and 3.
These references also presented some comparisons between experiment and
theory at speeds near the speed of sound. The investigation reported
herein was undertaken to provide similar comparisons for other models,

INTRODUCTION

namely several nose shapes, wing-body combinations, and current airplanes,

for Mach numbers up to 1.9. A concurrent study reported in reference L

provides further comparisons between experiment and theory for nose shapes,
wings, and wing-body combinations. Such comparisons indicate some of the

limitations of this theory in predicting the zero-lift wave drag of a
system of wings and bodies traveling at supersonic speeds.
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dimensionless coefficients defining the magnitude of the harmonics
of the Fourier sine series

zero-lift drag

Sp

average skin-friction drag
g(wetted area)

zero-1if't drag coefficient,

average skin-friction coefficient,

gero-1ift wave drag

zero-1lift wave drag,
aSp

length of equivalent body

free-stream Mach number

number of terms or harmonics used in the Fourier sine series
a harmonic of the Fourier sine series

free~-stream dynamic pressure

Reynolds number

projection of area in oblique cutting planes onto a plane parallel
to the yz plane

first derivative of S with respect to x

second derivative of S with respect to x

area upon which drag coefficients are based (see table I)

free-stream velocity

Cartesian coordinates
(Origin is at nose and positive x,y,z directions are rearward
and parallel to body axis, starboard, and upwards, respectively.)

angle between the positive 2z axis and the intersection of a
plane tangent to the Mach cone with the yz plane (positive
angles counterclockwise from positive 2z axis looking upstream)

Mach angle, arc sin ﬁ

mass density of air
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¥ angle between the positive y axis and the intersection of the
oblique cutting planes with the xy plane, arc tan {(cot p cos 8)
(positive angles clockwise from y axis looking down)

MODELS AND TEST

The configurations studied in the present report were two nose shapes,
several bodies, wing-body combinations, and current airplanes and are shown
in figure 1. The normal cross-sectional area distrivutions, modified where
necessary to produce zero slope at the nose and the tail, are shown in
figure 2. This modification is required by the theory used herein and
will be discussed at a later point in this report.

The nose shapes, models A and B, were parts of complete models fired
from the helium gun at the NACA Pilotless Research Station, Wallops Island,
Virginia. The complete models consisted of the nose shape having a fine-
ness ratio of 3 to 1 and an afterbody which was identical in each case.

The afterbody comprised a cylindrical section of fineness ratio 4 to 1
followed by a conical section of fineness ratio 5 to 1. Three fins were
mounted on the aft end of the conical section.

The drag forces for models A and B were obtained from the deceleration
history of the model as it traveled along a ballistic trajectory. The data
were obtained for a range of Mach numbers from 0.8 to 1.25 for Reynolds
numbers between 5.3 and 10 million per foot. The drag coefficients
presented herein are based on the maximum cross-sectional area of the body
(table I) and were estimated to be accurate to +0.008.

Models C to I shown in figure 1 were investigated in the Ames 6- by
6-foot supersonic wind tunnel. Models C and D had the same distribution
of cross-sectional area and differed only in the shape of the cross sec-
tion, model C having circular cross sections and model D having cross
sections more nearly rectangular. Models F and I had protuberances on
the side of the fuselage which approximated the fuselage shape with ducts
having inlets faired closed. On models G and H the air inlets were open.
The models were sting-mounted in the wind tunnel and the forces were
measured with an internal electrical strain-gage balance.

The data for models C to I were obtained at Mach numbers between

0.60 and 0.93 and between 1.20 and 1.90. The Reynolds number was 3 million
per foot for models C, D, E, F and H, 1.5 million per foot for model G,

and 4 million per foot for models E less wing and I. The drag coefficients
presented herein for these models were based on an assumed wing area for
models C and D and the total wing area for models F through I. The drag
coefficients have been corrected for model base pressure drag by adjusting
the pressure over the base to correspond to the free-stream static-pressure
curve. The drag coefficients %re considered to be accurate to *0.0005.
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THEORETICAI, CALCULATIONS

'¥

Reference 1 relates the zero-1ift wave drag of a configuration,
composed of wings and bodies, traveling at a supersonic speed to the
average drag of a certain group of equivalent bodies of revolution. The
determination of the area distribution of the equivalent bodies of revo-
lution is discussed in the Appendix. It suffices to say here that the
area distribution for each equivalent body is related to that of the real
system of wings and bodies by so-called cutting planes which are inclined
at the Mach angle to and a roll angle about the longitudinal or x axis
of the system. The group of equivalent bodies of revolution ﬂomprlses
all such bodies for roll angles of the cutting planes from O to 360 .

The drag for each of the equivalent bodies of revolution can be

computed from von Kérman's formula for the wave drag of a slender body
of revolution,

l/2 2
' - sz "V (x X - X
D*'(6) lig Jﬁl/z“/iz/z S"(x)s" (x; )Log( 1)d¥ dx,

This equation can be simplified to

D'(g) = E%%f.}:nAn2 .

when S*'(x) is expanded in a Fourier sine series (see ref. 5). To permit
the expansion of S'(x) in a Fourier sine series, it is necessary that
the value of S'(x) be zero at the nose and tail of the body. The total
drag of the wing~body system is then found from

2%
=1 '
D gﬂf D'(6)de
o

This equation can be further simplified to

n/2
D =-11?f_ D*(6)d6 -

n/2

for wing-body systems which have a vertical plane of symmetry. !
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The area distributions for the configurations studied herein were
found by a graphical procedure which is explained in some detail in the
Appendix. Five area distributions for different roll angles between
-n/2 and w/2 were determined for all of the configurations investigated
herein except for those models which were bodies of revolution. A typi-
cal group of such area distributions as obtained from the areas inter-
sected by a series of cutting planes at a Mach angle of 41.8° (M = 1.5)
is shown in figure 3(a) for model F less tail. For models G and H the
area distributions found by the methods given in the Appendix were modi-
fied to take account of the area of the ducts. The modification comsisted
in subtracting from the total srea distribution the area of the duct which
was taken as a straight-line variation from the inlet area to the exit
area. The treatment of the duct area in this fashion simulates a mass-flow
ratio of 1 through the duct (see ref. 3).

After the area distributions were found for the equivalent bodies of
revolution, the coefficients An in the Fourier sine series expressing

S1(x) were determined. The quantity }inAnz was then calculated and
plotted with respect to roll angle as shown in figure 3(b). The average
value of zg:nAna for insertion in the drag equations was then found
graphically from such plots.

It is noted that a smooth curve has been drawn through the five points
in figure 3(b) corresponding to the five eguivalent bodies of revolution
vwhich were evaluated. However, for those values of 6 in which the
cutting planes are parallel to a round leading or trailing edge of a wing
or tail there is a sudden change in area distribution at the value of x
where the plane intersects the edge of the wing or tail, thereby producing
an infinite slope, S'(x), and therefore, an infinite value of E;Iuﬁ 2,

The linear theory used herein would no longer be valid under such circum-
stances since it would indicate an infinite wave drag. Since experimental
results have indicated no large values of drag which would be associated
with these infinite values of j;jnAn2 in the theoretical calculations,

no attempt has been made in this report to define such values in the plots

such as figure 3(b). Furthermore, in the evaluation of j{:nAnz only 24

or 25 A terms were used in the Fourier sine series defining St'(x).
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The area distributions for the five roll angles, i%, iﬁ, and O, and
hence the drag, were obtained at Mach numbers of 1.0, 1.4, and 1.8 for 4

models A and B and at Mach numbers of 1.0, 1.5, and 1.9 for models C to I.
For models A, B, and E the coefficients Ap were determined by expanding
the slope of the area distribution in a Fourier series using harmonic
analysis as in reference 2. For the other models, the coefficients An
were found by an improved method (ref. 3) in which Tchebichef polynomials
are substituted into the equations defining the coefficients of the Fourier
series.

CALCULATION OF EXPERIMENTAL WAVE DRAG

Models A and B

The experimental zero-lift drag coefficients (CD ) for models A and B
which are presented in reference 6 are shown in figurds 4(a) and 5(a).
As described in reference 6, the zero-lift wave drag for each of the nose
sections (figs. 4(b) and 5(b)) was obtained by subtracting from the zero-
lift drag data of the nose-afterbody-fin combination the friction drag
of the combination, the wave drag of the afterbody and fins, and the base
pressure drag. The friction drag of the combination was estimated by a
method of Van Driest in which the boundary-layer flow is assumed to be
completely turbulent, an assumption considered in reference 6 to be
valid. The base pressure drag and the wave drag of the afterbody and fins .
were determined from the difference between the base pressure and wave
drag of an identical afterbody and fin in combination with a cone-shaped
nose and the wave drag of the cone-shaped nose alone as determined b
theoretically. It is assumed in determining the base pressure and wave
drag in this manner that the pressure fields of various nose shapes do
not significantly affect the pressure drag of the afterbody and fins.
This assumption appears Jjustifiable since the forward portion of the
afterbody is a fineness-ratio-4 cylinder.

Models C Through I

The experimental zero-lift drag for models C through I are shown in
figures 6 through 16. The zero-1lift wave drag coefficient for most of
these models was obtained by subtracting the estimated friction drag from
the measured zero-1lift drag coefficient.

Generally, in the past the zero-lift wave drag has been found by ‘
subtracting the zerco-1lift drag at subsonic speeds,usually considered to y
be the friction drag, from the total zero-1ift drag at supersonic speeds.

This method in effect assumes that the friction drag is independent of N
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of Mach number, an assumption essentially valid if the boundary layer on
the entire surface is laminar. A portion of the boundary layer is turbu-
lent, however, and the results of reference T show that the friction drag
coefficient for a turbulent boundary layer varies with Mach number. In
the present calculations, therefore, that portion of the zero-1lift drag

at supersonic speeds considered to result from a turbulent boundary-layer
flow was corrected for the effects of Mach number according to the factor
presented in reference 7. The magnitude of the experimental skin-friction
drag coefficient resulting from the turbulent boundary-layer flow was esti-
mated from a comparison of the experimental zero-lift drag at 0.8 Mach
number and calculated values of the skin-friction drag for completely
laminar and completely turbulent boundary-layer flow. The following
egquation gives the estimated value for the skin-friction drag coefficient
on the model at any Mach number.

_E-1L Cr
“rrTL iy, . TT-LT

Most of the symbols in this equation can best be described in the follow-
ing illustration.

T - E

Entire boundary
layer turbulent ' l0—o
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M
The ratio —F _ is the friction drag coefficient at some Mach number

CFM=o.a
to the friction drag coefficient at a Mach number of 0.8 for a model where
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all its area jg ifi turbulent flow (see ref. 7). The equation is valid
if the boundary-layer transition point does not change with Mach number,
which is the assumption made in this report.

The skin-friction drag for a model was computed by estimating the
drag of each model component and then adding the drag of all the com-
ponents together. The skin-friction drag of the body in which the entire
boundary layer is turbulent was found by using the results of figure 15
in reference 7. The skin~friction drag coefficient for fully laminar
flow was found from the equation Cp = 1.33/J7T as derived in refer-
ence 8. As mentioned previously, the slight variation in Cp with Mach
number was neglected for the laminar case. The Reynolds number used in
calculations for both types of boundary-layer flow was based on the
over-all length for the body and on the mean aerodynamic chord for a wing
or tail surface.

The drag data for models F, G, G less tail, and H (figs. 10, 13, 1k,
and 15) contain drag caused by sources other than friction which must be
considered in calculating the zero-1lift wave drag. The drag due to 1lift
of the horizontal tail of model F was estimated from tail-on and tail-off
data of the model to be approximately 0.0003 at subsonic speeds and about
0.0013 at supersonic speeds, and these values were used in calculating
the wave drag for that model. The wing of model G is cambered, resulting
in an increment of drag at zero lift which was estimated from 6- by 6-foot
supersonic wind tunnel data for wings of similar plan form with and with-
out camber to be about 0.0017 at subsonic speeds and about 0.0023 at
supersonic speeds. This drag due to camber and an additional drag due
to 1ift of various components were taken into account in the calculations
of the wave drag. In computing the wave drag for models G and H the
internal drag of the ducts has been subtracted.

RESULTS AND DISCUSSION

A comparison of the theoretical zero-lift wave drag and the experi-
mental data for models considered herein are presented in figures 4
through 16 inclusive. As might be expected for the range of Mach numbers
and models considered, the agreement ranged from poor to very good. 1In
general, agreement was poor at transonic speeds as evidenced by the results
for models A and B in figures 4 and 5. This lack of agreement is as
expected because the theory used herein is a linear theory which shows

the transonic drag rise as a step at M = 1.0, and it is well known that
experiment does not show this step.

In general, the agreement between experimental and calculated values
of zero-lift wave drag for Mach numbers above approximately 1.2 was very
good for vertically symmetrical fuselages alone or with thin symmetrical
wings mounted on them. For example, the comparison of data for models A,

m—
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B, C, E, E less wing, and F less tail (figs. 4, 5, 6, 8, 9, and 11), gener-
ally shows very good agreement. However, within this group of models
having vertically symmetrical fuselages there were several cases in which
the agreement was poor, namely the results for model F less the wing, tail,
and duct fairing protuberances (fig. 12) at most of the Mach numbers, and
for model E (fig. 8) and model F less the tail (fig. 11) at a Mach number
of 1.9. In the case of model F less the wing, tail, and duct fairings,

the discrepancy between experiment and theory has not been explained.

In the cace of the discrcpancies at M = 1.9, there are indications that
the data may be faulty. It will be noted that for some of the models the
experimental values of CDo at M = 1.9 are considerably above the values
at the lower supersonic Mach numbers. Models E and F less tail are very
dissimilar so that one would not suspect a configuration characteristic

to be responsible for the rise in CDo at a Mach number of 1.9. However,
both sets of results were obtained in the Ames 6- by 6-foot wind tunnel
wherein severe pressure disturbances are known to exist in the empty test
section at a Mach number of 1.9. Such pressure disturbances may be

responsible for the apparently faulty experimental data at this mach number,

Two sources of disagreement of the theoretical zero-1ift wave drag
with experimental data noted for the models considered are believed to
be a lack of vertical symmetry and/or a rapid variation of shape. For
models C and D, which had the same area distribution in planes perpendicu-
lar to a body axis, there was good agreement for model C but poorer agree-
ment for model D. This is attributed to the fact that model D did not
have vertical symmetry. Model I, in addition to lack of vertical symmetry,
had the most rapid variation of shape of any of the models considered and
showed very poor agreement. A probable explanation of the lack of agree-
ment for models D and I is suggested by reference 9. Lomax shows in this
report that when the shape of the body is such to cause a nonsymmetrical
pressure distribution and, hence, a resultant pressure force in the planes
of some of the oblique area cuts, then the theoretical zero-lift wave drag
is different from that calculated by the method used herein.

A comparison of theoretical and experimental ACp for models F
and G shows agreement which is not as good as the comparison for these
models without the tail. It is noted that the removal of the high vertical
tail of model G actually increases the estimated value of ACp, at the
highest test Mach number. This increase can be attributed to %he fact
that the length of the equivalent body of revolution at a roll angle (6)
of -n/2 is shorter and hence the area distribution is more blunt near
the aft end for model G less tail than for the complete model. As
expected, the theory predicts a higher wave drag for this blunt body
than for the less blunt body representing the configuration with the
vertical tail.

i‘




10 RN R LS8t NACA RM AS6I07

CONCLUSIONS

A comparison of the theoretical zero-lift wave drag and the experi-
mental data for several aerodynamic bodies indicates the following
general conclusions:

1l. The agreement of theory with experiment was poor near transonic
Mach numbers. This lack of agreement arises because the linear theory
used predicts a step at a Mach number of 1.0 which is not characteristic
of experimental data.

2. The agreement above transonic speeds was very good for vertically
symmetrical fuselages alone or in combination with a symmetrical wing.

3. The agreement above transonic speeds for two fuselages with simi-
lar area distributions showed poorer agreement for the one which did not
have vertical symmetry.

Lk, The agreement above transonic speeds for a model with a rapid
and nonsymmetrical change in shape was very poor.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Sept. 7, 1956
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APPENDIX

DETERMINATION OF AREA DISTRIBUTIONS OF

EQUIVALENT BODIES OF REVOLUTION

According to the theory used in this report, the zero-lift wave drag
of a particular aerodynamic configuration is dependent upon the ares dis-
tribution of a series of bodies, each of which is related to the geometry
of the configuration. To find the perpendicular cross-sectional area
distribution of one of these bodies, imagine the configuration with
a series of Mach planes spaced along its length and at the same roll angle
around the x axis with respect to its 2z axis. Each Mach plane slicing
through the configuration defines a certain area. This area and similar
areas for other x positions projected onto a plane perpendicular to the
X axis defines the desired area distribution. By repeating the above
process for other roll angles between 0C and 360°, one obtains the desired
area distributions of a series of equivalent bodies.

Area distributions used herein were found by a graphical procedure
using three-dimensional geometry. Although other graphical methods for
finding these area distributions are available, the present method is
discussed in some detail to indicate the degree of accuracy of the area
distributions used herein.

AREA DISTRIBUTION OF A FUSELAGE

To find the area distributions which depend only on the fuselage,
contour maps are constructed which represent the shape of the side of the
fuselage as observed from a position perpendicular to the x axis and at
an angle of @ from the positive z axis. The construction of a contour
map is illustrated in figure 17(a). For this simple example the fuselage
is a cylinder, symmetrical about the xz plane, and a roll angle of 90°
has been selected for the viewing position. As a result of symmetry,
the contour map at a roll angle of 270° (9 + 180°) is the same as that
for a roll angle of 90° and hence is not required. To construct the
contour map, contour planes were used. The edge view of these contour
planes which are perpendicular to the line of sight (parallel to the xz
plane for this particular viewing position) are shown on the top view of
the model. The contour map shows lines which represent the intersection
of these contour planes with the body surface. Each of these lines is a
constant distance from the vertical plane of symmetry and this distance
is noted on the contour map. The location of one point on one of these
lines is found by intersecting the periphery of a typical section, such
as AA in figure 17(a), by a line which represents a contour plane. Two
such points are shown projected onto the contour map at station x

1°
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Connecting these points to those of the same elevation at nearby stations,
such as xp, gives contour lines which for the illustration model are
straight since the body has a constant section.

After the contour map is constructed, for the roll angle of 900, the
area intersected by a Mach plane at a roll angle of 90  can be obtained
as in figure 17(b). As shown, the line representing the edge view of the
Mach plane at a roll angle of 90O is drawn on the contour map intersecting
the x axis at the desired value of x and at an angle of p to the x
axis. At each point where this Mach plane line intersects a contour line,
the distance from the fuselage surface to the plane passing through the
x axis and perpendicular to the line of sight is known. This distance
is laid off perpendicular to the cutting line and establishes one point
on the periphery of the cut. Connecting this point and similar points
for other contour lines gives the dotted line representing the area inter-
sected on one side of the fuselage by a Mach plane at a roll angle of 900.
As indicated, the construction can be done either on the contour map or
offset as in section CC. In the present case because of the assumed
symmetry, the area can be doubled to get the total area intersected.
However, in the general case it is necessary to repeat this operation on
the contour map for 6 + 180° to obtain the total intersected area. This
area is then multiplied by sine p to obtain the area projected onto the
plane perpendicular to the x axis. The area intersected by the Mach
plane at a roll angle of 6 + l80°,in the present case 2700, is determined
in a fashion similar to that discussed for a roll angle of 90° except that
the cutting line is drawn at an angle of -p to the x axis. As before,
the area is multiplied by sine p to obtain the area projected onto the
plane perpendicular to the x axis.

Use of the contour map in determining the fuselage area intersected
by the Mach plane at a roll angle of 6 1900, in the present case 180°
and OO, is illustrated in figure 17(c). The dotted vertical lines on the
contour map represent the intersection of Mach planes at 61:90O and the
contour planes. The location of these vertical lines can be determined
either graphically or mathematically. -To determine the spacing graphi-
cally a view of the fuselage at an angle 6 - 9d°is drawn as in the upper
part of figure 17(c). On this view, lines parallel to the x axis are
drawn which represent the edge view of the contour planes. Lines repre-
senting the edge view of the Mach planes at roll angles of both 8 - 9d3
and 6 + 90°are then drawn through the appropriate value of x on the
X axis and at an angle of +u and -y with respect to the x axis. The
intersections of these Mach planes with the contour planes are projected
onto the contour map giving the required spacing of the vertical lines
on the contour map. The spacing of these lines can also be readily deter-
mined mathematically since the spacing between the contour planes and the
angle of the Mach planes, p, are known. Dividing the distance between
two contour planes by tangent p gives the desired x distance between
the lines of intersection of the contour planes and the Mach plane. The
locus of the points of intersection of the contour lines with the vertical
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lines in the contour planes gives the projection of the area in the Mach
plane onto the contour plane through the x axis. In the present case
because of fuselage symmetry, the complete area can be obtained from the
single contour map as in figure 17(c). However, in the general case of
the cut at the roll angle (6 - 90°), that portion to the right of the
vertical line in the contour plane through the x axis would have to be
obtained from the contour map of the opposite side of the fuselage. For
the cut at the roll angle (6 + 900) the portion on the left side would
have to be obtained from the contour map of the opposite side. Multiply-
ing the total area by tangent p gives the projection of the area on
the plane perpendicular to the x axis.

The example discussed above is a specialized case where a contour
map of a body symmetrical about the xz plane was developed for a view-
ing direction of 8 = 90°. Due to the model symmetry about the xz plane
it was shown that the area cut by the Mach plane at the roll angle of
(6 - 90°) is the same as that cut by the angle (6 + 90°) when 6 = 90°.
This similarity in the area cut by two different Mach planes can be further
explained by a more general approach. For instance, if the fuselage is
symmetrical about a plane which contains the x axis and is at a roll
angle 7y sabout the x axis from the positive 2z axis, then the Mach
planes on either side of the plane at roll angles of 6 and 180°%+ 2y - 0
will have a common line of intersection in the plane of symmetry and will
intersect an equal area on the fuselage. Here again, if the plane of
symmetry is the xz plane then 7 = O and the area cut at a roll angle
of 6 is the same as that for a roll angle of 180°- 4.

Now if a fuselage has a plane of symmetry it can be shown using the
general rule just derived that eignt area distributions representing eight
different roll angles can be found by carefully choosing a pair of contour
maps. For example, assume that the roll angle for the contour plots is
30° and 210°. It is always possible then, using the methods discussed
previously, to find the area distributions for roll angles 300, 1200, 2100,
and 3000. If the fuselage is symmetrical about the xz plane, these
area distributions are the same as those at roll angles 1500, 600,

-30° (330°) and -120° (240P), respectively.

AREA DISTRIBUTION OF A WING

The graphical layout for finding the area distribution of a wing is
shown in figure 18. The first step in making the layout is to compute
the ordinates of the wing along constant-percent-chord lines. Figure 18
shows two constant-percent-chord lines and corresponding lines on the wing
surface representing the perpendicular distance of the wing surface above
the chord plane.
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Since the wing is thin, the cutting planes can be taken perpendicu-
lar to the wing-chord plane without introducing a significant error in
area. The angle V¥ at which the wing is cut 1is related to the roll
angle 6, and to the Mach angle, p, by the equation

¥ = arc tan (cot u cos 6)

At each point where this cutting plane intersects the constant-
percent-chord line the ordinate of the wing is known. This ordinate is
laid off perpendicular to the cutting plane, thus determining one point
on the periphery of the wing cut. Connecting the points from all the
constant-percent-chord lines indicates the upper surface of the wing cut.
If the wing is symmetrical then the integrated area between the surface
and the line in the chord plane gives half of the area in interest at a
particular station. This area must be doubled and added to the area of
a similar cut at -y for the opposite wing panel. This area is then
multiplied by cos ¥ and added to the area of the body at a station
position where the cutting plane intersects the reference body axis.
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TABLE I.- AREAS UPON WHICH DRAG COEFFICIENTS ARE BASED

Area,
Model SD,
sq Tt
A 0.01226 . ]
d = 11
B 0.01226 Maximum body cross-sectional area
C 12.500 | prpitrary wing area
D | 2.h00 }‘ y wing .
E 2.425
F 1.406
G 5'338 Gross Wing area.
H 2.730
I 1.626




17

'STepOUW 1§83 JO S8YD}9¥S TBUOTSUSWIJ =T 2an8Tg

8 [BpoW  (q)

oooo 4 22X
A s
P —
sesee
(XX XX |«
. G20 =) _ X
* o
(XXX Y] ’
sseee !
o o B - - - - B - - —
e o
¢ * H-2 9
o o S, o, =
bt -z
.
'
.
. e
om S9YdUl Ul suoisuUAWIP ||y
e
.*
. v 18poN  (p)
* o 0
seese G
ese ——
H ——
|
O1=M ! X
GL =%
) /
. - - - — - - — P —
(@]
3
M/ XIN HML'
2 o ]
: -7
Il‘\-
MW




NACA RM AB6I07

18

+PONUTAUO) =T SINITJ

a I13pon (p)

SOUOUI Ul SUOISUBWIP |

LE°8¢0

0 [8POW (9)

l8b |




19

NACA RM A56107

*panuUTquUO) -°T 9INITJH

3

1opow

(®)

Hillnﬂlm.llli\v

0€'66 =1

..-._
“‘
-

£08

+

86’12

ol'€G

g 'Ll

v Ffw-_v-m_.w_u

uolonba Apog

£9-€000 VOUN

uoljoas 1040 buim

8¢

-
- -
-~
-

—d 2

- -

ge'2s %

ﬁ

$3YdU) Ul SuoISUAWNP iy

AN

2¢



NACA RM A56I07

20

*PONUTAUOY -*T 2anITJ

4 [ePoW  (4)

B8E'SY S3Youl Ul suolsuawip |y

929"

uoipoijipow abpa-buippa)

Yilm xaauodiq juddsad ¢2'g dif
uo1402141pow abpa-Huipoay ~lc
Uim x3au0diq juadsad Gp jooy °
Uol§dds 104D |ID} |DIIHIBA
+— 00'¢l—

: aosed
_.QOOmlﬁ_ v'€ Olbs ssauydIyy _
24D JD|N24ID 9GO0 403y
ol22™ jooudid 260 juold
uooas 1104410 Buim |
~——————— Iv'c2 0Gee
1 \
] /
\ - , - - ~ A
J— \.
]
25 20 4




21

NACA RM A56I07

*PONUTAUOY) ~*T 2INTTJ

9

|19pOW (6)

+9-6000 VOUN

UOIOOS ||0JJID |1D4~|DIN}IBA

€9-80'Y000 VOVN
uouoas (104410 Bum

l
0
.m’

8340 U suoISUBWIP |V

(A
/._‘/'ﬁ‘

oY




NACA RM A56I07

22

l< ve'ee

*pouuTqUO) - T 8314

H 12pow  (u)

22'82 >

Sayoul Ul suoIsuaWIp |l

2

-“\.ﬂ‘“&.

oow

suo1340d 1034 43N0
SSAUNDIY} ASD3IOUI Of pPalsIpows
suoyoas |Iby pudb Bum yjoq

£€9-9000 VOUN diL

£9-8000 VOVN $00Y
UO1}O3S [10JJ1D |ID}~|DONIIA

£9-Sv000 VOUN diL
£€9-,.000 VOVN {ooy
uoioas (104410 Buim

- 8012




23

NACA RM A56I07

spapnTouUc) -1 aInITg

jepoin (1)
» 192 1€ N
00e 2! - 19v°61
\\!‘
\rll“r ———
FNe—_ - -
\\
G849
<09
|_l
—A.Immn.__|4
988 ¢¢

0g9°02

p————¢ %' 0| —+

—

s3you|

uy

SuoISUaWIP

$9-#000 VOUN

UOKD3S 10410 |1D}-|DOYIBA

S9-$000 VOVN

uonoas (oo Buipm

v

89¢2
i




NACA RM A56I07

.
e & o 006 oo

24

- gTopow 9897 8Y3 JO SUOTINQTJIAISTP BOIB-TBUOTIDSE-SS0I0 TBUION ~°C 2an3TJ

g 1apoN (9)
.C_ ax
v ¢
\\\\
"
\\\\\\\\\\
\\\\L\\\\\
\\\
v |2po (D)
“up éx
v ¢ 2
"
. +
\\\\\\\\\\\\\\\
\\\\\\\\\\ ——______---'V.
Ill\‘\

‘uj bs ‘g

‘ut bs ‘g

-




25

NACA RM A56IO0T

.-

*PONMUTAUO) =~°g 9INITA

a 18apon (p)
‘up *x
(0]¢] ov o1 02 Ol
e
I
/
/1. )
2 12po (9)
uy tx
(o]°} ot 01 or o]

0l

(074

Ol

oe

u bs ‘g

‘u; bs ‘s




NACA RM A56I07

26

0s

ovb

*pSNUTAUOY) =-°g 2anIT4g

Bbum ssa 3 pupb ‘g |spow (®)

Ul ¢x
o¢ . 02 Ol

\\\

Ol

O¢

‘ul bs ‘g




27

spanuUIlUO) -'g 3INITA

00
HAPPE s)onp pupb 1o} pup Bum SS3] 4 pup ‘ID} SS3| 4 ‘4 1IBPOW (3)

® o6 o
..... H
..... 0¢S OV o¢ (0] (o]} 0]

[ 2 ]
.....
.....

7

02

NACA RM A561I07




NACA RM AS6I0T

28

14°]

9g

*PANUTRUOY =-°2 2JNIT

o} ss3| 9 pup ‘9 |apoN (D)

.Cm ax

9l

RS

N

\

- —

Ol

0¢

o¢

ov

0s

‘ui bs ‘g




29

NACA RM AS56I07

0] 4

o¢

*PONUTRIUCY ~*g 2aINITH

H I3poN (y)
.c_ ax

0e

Ol

]

Ol

Sl

0¢

T

‘ur bs ¢g



NACA RM A56IO0T

30

<popnToOuC) -°g SIMITI
1 BPOW (1)
‘ul
ov o¢ 02 ol

ol

0¢

‘u bs ‘g




L X oee o [ . ¢ ... : 208 : . e
NACA RM A56107 RN - R RN 31
:.. :.. ... :.. : : e .‘. : [ ] ® ooe OO
28 H(radians)
-2 o]
2 Y D ——— T4 - AN
- 1r§4 s == Y
- m2 /] SR
33
. 20 97, RS
g 16 P4 \\\%k
¢ e N
S B T X
g 2 va \\\
o V% \\\
/ X
8 ///
4
o) ]
0 4 8 12 16 20 24 28 32 36 40 44 48
X, inches
(@ S vs. x
8
6
[
~J
o ~. » P
£ ., T 15
pﬁ \\ . I
2
0
T2 -4 0 /a 2
8, radions

) SnALZ vs. 8
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Page 26, figure 2(e):

AP

ERRATA

NACA RM AS6I0T

By Robert B. Petersen
March 27, 1957

The wing area distribution presented is incorrect. The following
table gives the correct increment In wing area above the body area

distribution,

Page 36, figure 8(b):

Body

station Wing area,
X, in. in,2
20.3 0]
22 .72
24 1.97
26 3.3>
28 4,55
30 5.38
31 5.60
32 5.65
33 5.53
34 5.22
36 4,02
38 1.56
39 0

The theoretical zero-lift wave drag coefficients for M = 1.0 to

M= 1.5 are too low.

At M=

1.0 the value of ACDO

and at M = 1.50 the value of ACp, should be 0.0056.
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should be 0,0087




